
Building Web Applications
Security Recommendations for Developers

 The Information Assurance Mission at NSA

 TSA-13-1019-FS April 15, 2013

Web applications on Internet-facing systems allow
access to everyone and operate 24 hours a day and
7 days a week, which leaves them open to attack.
An attacker's goals include obtaining personally
identifiable information (PII), financial information,
sensitive documents, or even using the site for
launching further attacks. Security breaches cost
commercial and government entities millions of
dollars a year. A recent study by Ponemon Institute
revealed that the average cost of a cyber crime
attack is around $8.9 million1. Of the mostly costly
attacks described in the study web-based attacks
were in the top 3 listed. This document provides
recommendations for web developers on how to
build and deploy secure web applications in order
to counter this threat.

Integrating and prioritizing security best practices
into all stages of web application development
requires support from both developers and
managers, but it minimizes the potential for hidden
costs and missed deadlines. The following tips, tools
and techniques will help an organization secure web
applications from development through
deployment of a new web application into a
production network.

Understand the Vulnerabilities
 The Open Web Application Security Project

(OWASP) has documented the ten most critical
web application vulnerabilities. The OWASP Top
102 list vulnerabilities which exist in web
applications and how to mitigate or eliminate
the vulnerabilities.

 CWE/SANS Top 25 Most Dangerous Software
Errors for 20113 contains common software
errors which may compromise an application,
such as SQL Injection (SQLi), cross-site scripting
(XSS) or buffer overflows. CWE/SANS also
documents how to mitigate or eliminate the
vulnerabilities.

1 http://www.ponemon.org/local/upload/file/2012_US_Cost_of_Cyber_Crime_Study_FINAL6%20.pdf
2 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
3 http://cwe.mitre.org/top25/index.html

Use Secure Building Blocks
 When possible, employ a secure web

application framework as they have been
developed with security in mind and help
minimize the occurrence of common web
application vulnerabilities. Example frameworks
are Django, GuardRails, and Apache Shiro.

 Ensure that a secure communication channel is
established to pass data between the user and
the web application. Transport Layer Security
(TLS) should be employed by the web
application anytime data (e.g. username,
password or other sensitive information) is
required to traverse the Internet or network.

 A web application's database may contain
information, such as credit cards, usernames, or
passwords, which is considered valuable to
attackers. Web application databases should be
securely configured and, when possible, reside
on a separate system which logs all accesses.

Audit Web Application during Development and
Post-Deployment
 Performing code audits during development

enables vulnerabilities to be addressed prior to
deployment, when it is most cost-effective.
Both commercial (e.g. HP Fortify) and open-
source (e.g. Sonar) tools are available to scan
source code for errors. Audits should also be
performed on a regular basis to minimize the
possibility of bugs being introduced into the
application later.

 Vulnerability scanners help identify potential
issues with web applications and operating
systems. Many vulnerability scanners are able
to scan various operating systems for missing
patches along with performing automated
penetration tests against a web application for
common security issues (e.g. XSS, SQLi,
directory traversal attacks and others). Scanning
regularly ensures the system stays updated and
common security issues do not exist.

Scan User Input for Attacks
 Unchecked user input is the main vulnerability

web applications face. A web application should
verify every input field to ensure only valid
input requests are accepted and parsed by the
system.

 OWASP has developed security application
programming interfaces (APIs) for various
programming languages commonly used in web
applications. The OWASP Enterprise Security
APIs (ESAPIs)4 are libraries that implement
methods for processing user input safely.

 Microsoft developed an ASP.NET library called
AntiXSS which implements methods for safely
processing user input for ASP.NET. Microsoft
also developed UrlScan, a security tool for
restricting different types of HTTP requests
bound for Internet Information Services (IIS).
UrlScan can identify and block potentially
dangerous HTTP requests, such as those used in
SQLi attacks.

 Deploying a Web Application Firewall (WAF) will
help to prevent against invalid input attacks and
other attacks destined for the web application.
WAFs are intrusion detection/prevention
devices that inspect each web request made to
and from the web application to determine if a
request is malicious. Some WAFs install on the
host system while others are dedicated devices
that sit in front of the web application.
Commonly used WAFs include both open
source (e.g. ModSecurity) and commercial (e.g.
Barracuda WebApplication, Trustwave
WebDefender) offerings.

4 https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

Harden the Environment
 A web application depends on the security of

the environment in which it resides. The host
system and any other devices which support
the web application should be configured in a
secure manner. Various security best practices
and guidelines, such as NSA Security
Configuration Guides5 and DISA STIGs6, exist for
many commonly used operating systems,
applications and network devices.

Monitor for System Integrity
 System integrity should be maintained

throughout a WAF’s lifecycle. The WAF and the
WAF’s environment must be monitored
regularly in order to determine if an intrusion
was attempted or might have occurred.
Installing anti-virus software and enabling
logging will help in maintaining a secure system
state. Also, remote access should be disabled
unless absolutely necessary as it provides an
attack vector against the application.

 Host systems, firewalls and intrusion detection
device logs should be reviewed daily in order to
identify attacks, suspicious behavior or possible
anomalies occurring within the network which
may indicate a possible intrusion. In the event
an attacker was successful, these logs will
provide details into the attack and will be
crucial in determining the extent of the attack's
damage.

 Monitor important system and web application
files to detect unauthorized modifications and
to ensure the system remains in a secure state.
Tripwire (Open Source), OSSEC (Open Source)
and Cimtrak (Commercial) are commonly used
tools for performing file integrity monitoring.

5 http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/index.shtml
6 http://iase.disa.mil/stigs/a-z.htm

	Understand the Vulnerabilities
	Use Secure Building Blocks
	Audit Web Application during Development and Post-Deployment
	Scan User Input for Attacks
	Harden the Environment
	Monitor for System Integrity

